
TUlB-5 

Extraction of Coupling Parameters For Microwave Filters: 
Determination of a Stable Rational -Model from Scattering Data 

Fabien Seyfert(‘), Laurent Baratchart (‘I, Jean-Paul Marmorat(‘), Stephan Bila(‘), Jacques Sombri#) 

%VRIA, 06902 - Sophia-Antipolis, %RCOM, 87060 - Liioges, (%3iES 3 1401- Toulouse, France , 

Abhcf - We present P method to derive P rational 
model from scattering data for ekch’ical parameter 
extraction. Unlike other methods, the stability and the 
MxMlllan degree of the rational approximation we 
guaranteed. In order to improve the usability of our 
method in computer-aided tuning , we also present an 
algorithm perfsmning automstic reference plane 
adjustment. Results obtained on a 10” order dual mode 
IMUX frter me presented. 

1. NrRODUCTlON 

Extracting coupling parameters from measured or 
simulated scattering data of filters can be very effective 
to reduce the cost of hardware and CAD tuning. 
However, the direct approach which consists in feeding 
to a generic optimize? the function evaluating the 
scattering matrix from the coupling parameters, in order 
to tit the data, often depends on a favorable initial guess 
and substantial efforts are currently being spent to 
design more robust methods. 

Another approach consists in first deriving a rational 
model for the data. In a second step, the coupling 
parameters are extracted from this rational model using 
classical design methods 11.[2]. Recent publications 
[3]-[4] have advocated the use of the Caucby method to 
compute the rational model. Let us point out.tbree major 
problems encountered in this direction: 
- there is no guaranty on the stability of the rational 
model, i.e. the derived model can have unstable poles; 

there is no control on the MacMdlan degree of the 
model (the number of circuits in the equivalent low- 
pass model), i.e. the residues of the corresponding 
rational matrix wll usually not be of rank I, whereas 
this is mandatory in the electrical model (see [2]); 
- no constraint IS imposed to the model outside the 
frequency band of measurement, which may result in 
unrealistic behavior there. 

To overcome these difficulties, the usual trick 
consists in forming the stable lossless rational model 
matching the transmission and reflection zeroes 
computed by the Cauchy method. Specifically, this 
amounts to forget about the denominator computed by 
the Cauchy method and replace it by the one computed 

from the numerators using spectral factorization. 
Unfortunately, nothing ensures that the derived lossless 
rational model will tit our data, which in turn can lead to 
a loss of accuracy of the whole parameter extraction 
procedure. 

We present here a method to derive a stable rational 
model of prescribed MacMillan degree from scattering 
measwements. As the determination of the delays 
caused by access devices can be quite a laborious task, 
our method also includes, as a preliminary step, an 
automatic reference plane adjustment. 

II. AUTOMATIC REFERENCE PL~ADJLIST~~ENT 

We denote by (w. SI,I(W,), %(w,), S.&J, %&“~)) 
the scattering lTlC3SUlEIll~“tS after low-pass 
transfomution. The low-pass model, including delay 
components assumes the following form: 

where h(w) is the transformation which maps 
normalized frequencies to high frequencies. The P,~ and 
q are polynomials defining the rational scattering matrix 
associated to the low-pass equivalent circuit. In order to 
reduce the problem to pure rational approximation, we 
first need to determine the real numbers a and fi. 

For this, let us select a subcollection of measurement 
indices accordmg to the following rule: 

I =@,I y I> WC1 (2) 

where wc is chosen sufficiently large for the moduli of 
$,I and Su to behave smoothly when bI> w, ; this of 
course entails that the broadband, where measurements 
are made, is somewhat larger than the equiripple 
bandwidth. Now, at higher frequencies, far off the pass- 
band, one can reasonably expect a good approximation 
of the rational components in (I) by the first few terms 
of their Taylor expansion at infinity. Letting n, denote 
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selected number of Taylor coefficients, which is to be 
viewed as a design parameter of the algorithm, we 
define the cost function: 

and the number a we are seeking will be assigned to 
the value where preaches its minimum. 

The underlying idea here is that, away from the pass 
band, the filter will be close to a polynomial in I/w if, 
and only if, the delay components are properly 
compensated. In practice, the values w&5 (we work 
throughout with normalized frequencies) and n, =4 
seem to give very satisfying results when the broadband 
is three times bigger than the pass band. 

For practical implementation of this method , note 
that evaluating ly is a standard least squares problem, 
whose solution requires a matrix inversion of size 
(n,+l)x(n,+l). This matrix does not depend on z hence 
the inversion needs to be performed only once for. This 
allows us to perform the minimization in a brute force 
manner: we first select a priori bounds for the delay 
values (recall thatn can be seen as tbe time it takes for 
the signal to travel from the source to the reference 
plane of the filter) and proceed by exhaustive 
evaluations leading to the determinatmn of a within a 
prescribed tolerance. To determine p we proceed in the 
same manner using the measurements of s.1 instead of 
those of $,I. 

In addition to estimatmg the delay, the above method 
provides us, by means of the Taylor expansion it 
computes, with a completion of our data outside of the 
broadband, all the way to infinity. In what follows, we 
shall improve this completion by making use of two 
basic properties our identified model should possess, 
namely causality and stability. 

In terms of rational functions, these properties are 
equivalent to the fact that poles are located at finite 
distance in the open left half plane. The latter is in turn 
equivalent to the fact that the rational function is 
analytic in the closed right half plane including at 
intimty. We now imbed such rational functions in a 
larger space of analytic function on the right half plane 
which allows us (thanks to its Hilbert space structure) to 
handle causality and stability in a convenient manner. 
The space we have in mind is the Hllben space of 
analytical functions on the open right half plane whose 
L2(dw/(l+w2))-norm remains uniformly bounded on 

. 

vertical lines p]. This space is one of the so-called 
Hardy spaces of the right half-plane, denoted by H2. We 
also define the space L* of all comolex functions 
defined on the imiginary axis whose modulus to the 
square is integrable agamst the measure dw/(l+w’), and 
we endow it with the the L2 norm: 

An unportant fact is that each member of E? can be 
idenbtied with its trace on the imaginary axis (the trace 
exists as a non-tangential limit, see [5]). This allows one 
to consider H’ as a subspace of i?. We let d be the 
orthogonal complement of H2 in L2. Note that, by 
construction each L* function can be decomposed as the 
sum of a function m HZ (which is called its stable part) 
and a function in c? (that can be considered as its 
unstable part). 

Consider now that our data have been compensated as 
explained in the previous section and that each S,, is a 
function defined on the broadband J=[min(w,),max(w,)], 
its value between two measurement points being 
obtained using, sayspline interpolation. Using again the 
hypothesis that our rational model should behave nearly 
like a polynomial of order n,‘in I/w for /w/>w, we 
consider the following optimization problem: 

*p(wk)-P(~12 

‘- I 

PE C”<[Xl 
c.9 

I~G*(%~Pj~2~~~ 

the./< ~,(-+l 

In what precedes, J, is the complement of J and v 
denotes the concatenation operator, so that $,I vp is the 
function defined by $,, on J and by p(l/w) on Jc. 
Moreover PG”*, denotes the orthogonal projection from 
L2 onto d and C,,,[x] is the set of polynomials with 
complex coefficients whose degree is less or equal ton, 

In words, our optimization problem (5) reads: find the 
polynomial completion which best tits the data on I 
under the constraint that: 

* the complemented data have an anti-stable part 
whose L2-norm to the square 1s less than EC 

- the modulus of the completion remains bounded 
by I on J,. 
The latter constraint is meaningful as our filter is 
passive. In addition for the diagonal terms S.2 and $,I 
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one can prescribe zerns at infinity by imposing zerns at 
0 for the polynomial p. 

As tn the solution ofproblem (5), it can be shown that 
as scan as the number of measurement points in I 
exceeds (“,+I) the cnst function is strictly convex. The 
admissible set defined by the constraints in (5) is easily 
shown tn be convex. This twn remarks leads twn the 
fact that (5) has a unique optimal solution unless its 
admissible set is empty. Let us mention here without 
proof that the followmg family of functibns 

s-l * 

( 1 zi 
,k>O (6) 

is an orthogonal basis of G2 that can be extended tn an 
orthogonal basis of L? by letting k range river negative 
integer as well, so the matrm of the orthogonal 
projection PG~ is easily expressed. Concerning the last 
constraint in (5) we choose do discretise it, which of 
course entails an approximation that can, however, be 
controlled by classical theorems. All this allows one tn 
regard (5) as a convex quadratic optimization problem 
(in the coefficients of p) which can be tackled by 
classical Lagrangian techniques [6]. For n,=4 its 
resolution PC, 600 Mhz Pentium) takes less than 2 
seconds. 
In order tn ensure that the admissible set of (5) is not 
empty we simply solve in the same manner the 
following problem: 

mjjlpG2 G, v ~1’ 

i 

PE C,bl 
(7) 

Vwe J, I p(-) 1’s 1 

and denote by E,,,m its optimal value (note that the 
admissible set for this problem is never empty as it 
contains p=O). This gives an easy characterization of the 
solvability of (5), namely: I$ L E,,, 
If pu are the polynomial completions computed by the 
latter method we define 

F,,, = PHI G,, ” P,.~). (8) 

Those functions can be seen as the causal, stable 
projections of our initial data; nnte that, by construction, 
their L? distance to the data is less than the square rnnt 
of $. 

IV. STABLE RATIONAL APPROXIMATION OF QVEN 
MACMILLAN DEGREE 

If II, is the order of the filter (i.e the number of 
coupled circuits considered in the low pass equivalent 
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circuit) we now consider the following rational 
approximation problem: 

w rational 2x2 “nhix 
DegO L n, 

where the degree of a matrix 1s the Mc-Millan degree. 
We denote by W, the optimal solution of (9). Note first 
that, thanks tn the fact that F is defined on the whole 
imaginary axis, W,, cannot have purely imaginary 
poles. Suppose now that W,, has snme strictly unstable 
pole. Its partial fraction expansion decomposes as the 
sum of a stable part W, (corresponding tn the stable 
poles) and an unstable one W, (corresponding m the 
unstable poles). But the onhogonahty of W, with I? (to 
which the elements of F do belong, thanks to the 
preceding step) indicates that %4 would be a better 
rational approximation tn F than Wept. This implies that: 

W,, IS stable 
In any algorithm constructing a minimlzmg 

sequence for problem (9) (typically a gradient 
algorithm) it is never favoumble to let one or several 
poles become unstable. In other words, for such 
algorithms, we can restrict quite naturally to stable 
rational functions (the constraint of stability is never 
actwe). 
For the practical implementation of such an a!goritbm 
there remains to find a tractable parametrization for the 
rational matrices of given MacMillan degree. This 
problem has been widely studied in [7l-[8]. Getting into 
details here would deserve a paper on its own but what 
can be said briefly on this topic is: 
- Schur parameters allow one tn nicely parametrize 
stable rational matrices of given MacMillan degree 
(such parameters are intelpolation values from which 
the ratmnal matrix 1s recovered exphcitly ). 
- This in turn offers a way to parametrize all stable 
rational matrices of given degree in connection with (9). 

Those ideas were implemented in twn gradient based 
rational approximatmn engines called hypermn [9] and 
RARL2 [lo] (the twn software differ in their choice of 
Schur parametrization). 

v. PAF?&e?zR EXTRACrION OF AN IMUX FILTER OF 
ORDER IO 

We implemented this three steps approximation 
algorithm (delay detection, completion, rational 
approximation) as a matlah toolbox. We present here the 
results obtained on a 10th order lmux filter realized using 
5 dual mode w&es (4 = 3.727 GHz, Bw= 44.5 Mhz). 



Figure.1 shows the data, the compensated data, as 
well as the polynomial completion. EC, the maximal 
norm of the anti-causal part(5), was set here to 0.3% of 
the L2 norm of the data. F1gure.Z shows the computed 
rational approxmmtion. Note that the theoretical filter 
which couplmgs are shown in Table.1 has 6 
transmission zeros: 4 at the border of the pass-band and 
2 real opposite zeros used to adjust the group delay. 
Finally the extracted couplings arc shown in Table.1. 

The later measurements arise from a tuning session at 
the laboratory of Alcatel Space. After each parameter 
extraction phase, corrections were applied to the filter’s 
tuning screws and irises. Convergence to the desired 
filter response was obtained in five such iterations. 

VI. coNcLusIoN 

A complete strategy for deriving a stable rational 
model of given MacMillan degree from scattering data 
has been presented. The derived computer aided tuning 
method has shown to he very effective in practice, in 
particular when dealing with high order filters. 

Table I : Theoretical and extracted couplings 
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